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The use of molecular oxygen as a stoichiometric reoxidant in e Quinine (OTBS) 72(21) 14
combination with a catalytic metal has exceptional practical f (R)-BINAP® 7 <11
advantages for applications in organic synthédikis is in part g (S,8)-Ph-BOX° 5 <11
due to the favorable economics associated with molecular oxygen h (S,S)-Ph-PyBOX 1 ND
and the formation of environmentally benign byproducts in the i (+)-Trogers Base  84(11) 1.1
oxidation manifold (water and hydrogen peroxide). An excellent j (-)-Sparteine 14(7) 26

example of the use of molecular oxygen in organic synthesis is - - - — -
the metal-catalyzed aerobic oxidation of alcohols to aldehydes | ®Ligand dSt“‘.Ct“r.eS are l"’“’a”aé"e ('; thel %upportmég ififGonversion
and ketoned2 We became interested in extending the scope of etermined using internal standafd mol % Ligand.

these oxidations to asymmetric catalysiFo this end, we . L L . .
envisioned two potentially useful reactions: (1) the oxidative tion for an oxidative kinetic resolution catalyst by screening

kinetic resolution of racemic secondary alcotfokietic resolu- various chiral amine ligands in addition to common ligands for
tions that have previously been accomplished using acyfation Pd-mediated asymmetric reactions (Table 1, eq 1). Bi- and
and oxidatiorf;# and (2) the oxidative desymmetrizationrogse tridentate ligands were generally poor templates for oxidation

diols? Herein we report a convenient, enantioselective aerobic 91Ving low conversions (entries b, f, g, and h). In contrast, Pd(ll)
oxidation of alcohols mediated by Pd(ll) and a chiral diamine. Complexes derived from pyridine ligands with 3-substitution gave

Aerobic oxidations of alcohols using catalytic Pd(ll) salts have Nigh conversions, albeit with low. valuest (entries ¢ and e).
been reporte@ ¢ Of particular interest is the observation that 1h€ Most promising result from this initial screen was tha)-(
amine additive®¥ ¢ both effect ligand-accelerated cataly$snd sparteine, a chiral tertiary diamine, gave the tes(2.6).

extend the substrate scope. Therefore, we initiated our investiga- T0 improve both the reaction rate arid;, the reaction
parameters of the —)-sparteine/Pd(ll) catalyst system were

(1) Barton, D. H. R.; Martell, A. E.; Sawyer, D. TThe Actvation of imi i i i
Dioxygen and Homogeneous Catalytic OxidafiBienum Press: New York, o_ptlmlzed. Ten react_lon parame_ters_ln a single apparatus were
1993, simultaneously examined under identical temperature and oxygen
(2) For a recent review, see: Sheldon, R. A.; Arends, I. W. C. E.; Dijksman, pressure (balloon pressufé)3During each screen, aliquots were
A.Catal. Today200Q 57, 157. periodically analyzed using an autosampling GC equipped with

(3) Recent examples: (a) Ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, - AT
R. A. Science00 287, 1636. (b) Nishimura, T.. Onoue, T.. Ohe, K.. Uemura, =~ & chiral column. The optimization procedure allowed us to

S.J. Org. Chem 1999 64, 6750. (c) Nishimura, T.; Onoue, T.; Ohe, K.;  efficiently examine the effect of solvent, component concentration,

Uemura, STetrahedron Lett1998 39, 6011. (d) Peterson, K. P.; Larock, R. Pd 1) source and mo'ecu'ar S|e%9n and reaction rate.
C. J. Org. Chem1998 63, 3185. (e) Markol. E.; Giles, P. G.; Tsukazaki, ( ) ’ el

M. Brown, S. M.: Urch, C. JSciencel996 274 2044. After screening these parameters, two sets of conditions were
(4) Asymmetric dihydroxylation has been accomplished usings€e: (a) identified. Conditions A: 0.5 Mla in 1,2-dichloroethané, 20
Wirth, T. Angew. Chem., Int. EQ00Q 39, 334. (b) Ddbler, C.; Mehltretter, mol % (—)-sparteine, and 5 mol % of Pd(OA@nd conditions

G.; Beller, M. Angew. Chem., Int. EA999 38, 3026.

(5) For a review of practical issues in kinetic resolutions, see: Keith, J, B 0-25 M la in 1,2-dichloroethane, 20 mol %-{-sparteine,

M.; Larrow, J. F.; Jacobsen, E. Mdv. Synth. Catal2001, 343 5. and 5 mol % of a soluble Pd¢$ource (Pd(MeCNEI, and Pd-

53 ée)(bc)aézlﬁ'g% ;%ylfl:ggrimgz) \\/Se'd%;égd;ell\lﬂa\l]cKS{Jb lJé%fg(-:'-_eétr;mJé 3,F " (COD)Cl, gave similar results). Using both conditions the effect
Fu, G. C.Chem. Commur200Q 1009, (c) Jarvo, E. R.; Copeland, G. T..  Of temperature was evaluated. For Pd(QAtt)e temperature was

Papaioannou, N.; Bonitatebus, P. J., Jr.; Miller, . Am. Chem. Sod 999 found to have a significant influence on enantioselectivity wherein
121, 11638. (d) Vedejs, E.; Daugulis, 3. Am. Chem. Sod999 121, 5813. a temperature of 60C gave the highesk. value, while no

(e) Sano, T.; Imai, K.; Ohashi, K.; Oriyama, Them. Lett1999 265. (f) P
Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. S|gn|flcam tempera_ltl_Jr_e eﬁeCt_ Was Observed_ f(_)l’ Bd{DUrces.
M. J. Am. Chem. S0d 998 120, 1629. (g) Ruble, J. C.; Tweddell, J. Fu, G.  Overall for 1a, the initial conditions were optimized from g,
C.J. Org. Chem1998 63, 2794. (h) Ruble, J. C.; Latham, H. A.; Fu. G. C of 2.6 to 17.5 using conditions B.

J. Am. Chem. S0d 997,119, 1492. (i) Kawabata, T.; Nagato, M.; Takasu,

K.; Fuji, K. J. Am. Chem. Sod997 119, 3169. Next, the substrate scope of the oxidative kinetic resolution
(7) Recent oxidative approaches: (a) Masutani, K.; Uchida, T.; Irie, R.; was evaluated (Table 2). Using both conditions, benzylic second-
Katsuki, T. Tetrahedron Lett2000,41, 5119. (b) Nishibayashi, I.; Takei, I.. ary alcohols are generally good substrates for oxidative kinetic

Uemura, S.; Hidai, MOrganometallics1999 18, 2291. (c) Gross, Z.; Ini, S. . . . .

Org. Lett 1999 1, 2077 (d) Hashiguchi, S.; Fuijii, A.; Haack, K.-J.; Matsumura, resolution W'thkfel values ranging from 8.7 to 23.6. Usmg Pd-

K.; Ikariya, T.; Noyori, R.Angew. Chem., Int. Ed. Endl997, 36, 288. (e)

Rychnovsky, S. D.; McLernon, T. L.; Rajapakse,HOrg. Chem1996 61, (1) kes = IN[(1 — C)(1 — ee))/ In[(1 — C)(1 + ee)] whereC is the

1194. conversion and ee is the enantiomeric excess. For an excellent discussion of
(8) Epoxidation: Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; kinetic resolutions, see: Kagan, H. B.; Fiaud, J. C. Kinetic Resolutiop.

Ikeda, M.; Sharpless, K. Bl. Am. Chem. Sod 981, 103 6237. Stereochem1988 18, 249.
(9) For examples of nonenzymatic desymmetrizationmafsediols via (12) CAUTION: Organic solvents are highly flammable under O
acylation see: (a) Yamada, S.; KatsumataJHOrg. Chem1999 64, 9365. (13) See Supporting Information for details.
(b) Oriyama, T.; Imai, K.; Hosoya, T.; Sano, Tetrahedron Lett1998 39, (14) Molecular sieves have been used as a catalyst to disproportios@te H
397. (c) Via acetal cleavage, see: Fujioka, H.; Nagatomi, Y.; Kotoku, N.; formed in the reaction. See ref 3b.
Kitagawa, H.; K.Tetrahedron200Q 56, 10141. (d) Kinugasa, M.; Harada, (15) In the absence of Dcatalytic oxidation is not observed. DCE has
T.; Oku, A.J. Am. Chem. S0d.997, 119, 9067. been used as a terminal oxidant in Pd(ll)-catalyzed alcohol oxidations. For a
(20) Berrisford, D. J.; Bolm, C.; Sharpless, K. Bngew. Chem., Int. Ed.. leading reference, see: #Aviohand, S.; Hein, F.; Muzart, JTetrahedron.
Engl. 1995 34, 1059. Lett. 1995 36, 2473.
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Table 2. Substrate Scope

o 5mol% Pd(l), DCE, O, o

o, e}
R/{ ; 20 mol% (-)-sparteine R)\R1 . R)kw @
1a-l
substituent %conv  averagé
entry R R conditiong (% ee}* Krel

1 la GCeHs Me A 65.9(98.2) 13.0

2 B 53.9(86.9) 17.5

3 1b GCeHs Et A 59.4(82.0) 8.7 Figure 1. X-ray analysis of Pd(C}(—)-sparteine complex.

4 B 57.5(88.5) 11.6 . .

5 1c pMeOGH:; Me A 67.2(99.0) 151 _To investigate the nature (_)f the catalyst structure, an orange

6 B 72.1(99.0)  10.0 single-crystal of the-{)-sparteine/PdGlcomplex, was obtained.

7 1d pMeGHs; Me A 60.8(96.6)  14.0 X-ray analysis o4 showed the {)-sparteine bound bidentate to

8 A 57.0(94.3) 17.1 one side of a slightly distorted square plane of Pd (Figur® 1).

9 1le pCRCiHs Me A 59.4(83.2) 9.1 Additionally, the Pd-N bonds are slightly asymmetric with a
10 B 48.6(70.3) 125 difference of 0.05 A. Comple®# was evaluated as a catalyst in
11 1f mCRGHs Me A 63.6(92.7) 9.6 the oxidative kinetic resolution dfaat 5 mol % and found to be
12 B 47.5(71.5) 159 catalytically incompetent (eq 4). However, addition of){
iz iﬁ gTyC:SCGH“ MZ ﬁ gg'gggg';‘g igg sparteine (10 mol %) reestablished normal catalytic activity and
15 1 2-Naph4thy| Me A 65.7(95.9) 101 enantloselectlvny (e.q 5), suggesting an exogenous base is
16 1j tertBu Me A 58.5(77.8) 7.6 necessary for oxidation.

17 1k o-MeOGH. Me B 48.2(66.3) 14.0 o 5 mol% 4

18 1l pBrCHs Me B 435(66.1) 23.6 H bCE. O, .

- : - P Me robuss no oxidation 4)
a Conditions A, Pd(OAg)at 60°C and 0.5 M in substrate, Condition

B, Pd(MeCN)Cl, at 70°C and 0.25 M in substrat& Enantioselectivity OH 5mol% 4 OH o
and conversion were determined by GC using commercial chiral P _DCE, Op oo+ 5)
columns and tetradecane as an internal stand@dta represents a Ph™ Me 10% (-)-sparteine Ph™ Me Ph™ Me
single experimentd Thek value is an average of multiple experiments . . . . .
and measured at 24 hAt 80 °C. In conclusion, a convenient method for enantioselective aerobic

alcohol oxidation has been discovered using-g$parteine/Pd-
(OAc),, it can be seen that substituents on the aromatic ring (11) catalyst. All reagents are commercially available and are used
influence enantioselectivity with electron-rich alcohols giving without extensive purification. Benzylic alcohols give moderate
higherk. values than electron-poor substrates. However, no suchto goodk values in an oxidative kinetic resolution, anthase
correlation is observed using PdGlources. By increasing the  1,3-diol is a good substrate for oxidative desymmetrization. The
size of R from methyl to ethyl, a decrease in thg is observed. application of enantioselective oxidations to other substrate types,
Using 1.0 g of thep-methyl substrateld, in an oxidative kinetic the identification of second-generation catalysts with antipodal
resolution, Pd(COD)Glwas the most effective Pd(ll) source selectivity, and understanding of the origin of enantioselectivity
giving the resolved alcohol in an isolated yield of 41.9% at 92.0% are currently being investigated.
ee with a slightly retarded rate. Resolution of an aliphatic alcohol
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20 mol% (-)-sparteine, 60 °C The crystal structure analysis was performed by Atta Arriff.
Ph O-sp Ph/'\)]\Ph 3) y Y P Y
2 82% ee, 69% yield 3
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investigated (eq 3). Treating the 1,3-dlto Pd(MeCN)Cl,/

(—)-sparteine conditions resulted in enantioselective oxidation JA015827N

providing 3 in 82% ee and 69% yield (93% ee, 59% yield - - .
. . . . 16) For Pd(ll)/&)-sparteines-allyl complexes, see: (a) Trost, B. M.;
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